Original Articles

Detection of metallo-β-lactamase gene blaIMP of Escherichia coli clinical isolates in Sanglah General Hospital Bali

Muhammad Ardi Afriansyah, Ni Nyoman Sri Budayanti , Komang Januartha Putra Pinatih

Muhammad Ardi Afriansyah
Master Program of Biomedical Science, Medical Faculty, Universitas Udayana

Ni Nyoman Sri Budayanti
Departement of Clinical Microbiology, Medical Faculty, Universitas Udayana Denpasar. Email: nyomansribudayanti@gmail.com

Komang Januartha Putra Pinatih
Departement of Clinical Microbiology, Medical Faculty, Universitas Udayana Denpasar
Online First: December 01, 2019 | Cite this Article
Afriansyah, M., Budayanti, N., Pinatih, K. 2019. Detection of metallo-β-lactamase gene blaIMP of Escherichia coli clinical isolates in Sanglah General Hospital Bali. Indonesia Journal of Biomedical Science 13(2). DOI:10.15562/ijbs.v13i2.213


Background: Escherichia coli belong to the family of Enterobacteriaceae that are responsible as one of the leading cause of nosocomial infections. The emergence of Carbapenem-resistant Enterobacteriaceae presents therapeutic challenges for clinicians on choosing the correct type of antibiotics to prescribe. The Emergence of microorganism capable of producing metallo-β-Lactamase (MBL) causes resistance to several antibiotic, including carbapenem. 

Aim: The study aims is to detect whether there are E.coli clinical isolates in Sanglah hospital that produce metallo-β-Lactamase (MBL) enzyme and carries blaIMP metallo-β-Lactamase (MBL) gene.

Methods: Clinical isolates of E.coli were collected from patients diagnosed with infection in Sanglah Hospital within January to June of 2018 nd has been subjected to antibiotics susceptibility test using Vitek-2 Compact system. EDTA-DDST was performed to detect MBL producing strains, followed by detection of blaIMP gene using PCR.

Results: There were no E.coli clinical isolates that produce MBL enzyme and carried blaIMP gene (0.0%). The prevalence of E.coli producing blaIMP gene in Sanglah hospital was 0.0%.  

Conclusions: None of the Escherichia coli exhibits the ability to produce metallo-β-Lactamase (MBL) enzyme and carried blaIMP gene. Detecting other genes aside from blaIMP gene may be necessary to reveal the other causative factors of antibiotics resistance in Escherichia coli

References

Manu D, Lupan I, Popescu O. Mechanism of Pathogenesis and Antibiotics Resistance in Escherichia coli. Annals of RSCB. 2011;16(2):7-19.

Skagseth S. “Site-directed Mutagenesis of the Metallo-β-Lactamase VIM-7 From the Opportunistic Human Pathogenic Bacteria Pseudomonas aeruginosa”. (Thesis). Norwegia: Univeristy of Tromso. 2012.

Palzkill T. Metallo-β-Lactamase Structure and Function. Ann N Y Acad Sci. 2013;1277:91-104.

Spagnolo AM, Or lando P, Panatto D, Perdelli F, Cristina ML. An Overview of Carbapenem-resistant Klebsiella pneumoniae: Epidemiology and Control Measures. Review in Medical Microbiology. 2014;25(7):7-14.

Rasyid R, Suharti N. Deteksi dan Identifikasi Enzim Metallo-β Lactamase (MBL) Pada Bakteri yang Resisten Terhadap Antibiotika Carbapenem. 2012;1-13.

Adwan G, Bourinee H, Oth-man S. Prevalence of Metallo-β-Lactamases Producing Escherichia coli Isolated from North of Palestine. Journal of Microbiology and Antimicrobial Agents. 2016;2(1):9-15.

Tzouvelekis LS, Markogiannakis A, Psichogiou M, Tassios PT, Daikos GL. Carbapenemases in Klebsiella pneumoniae and Other Enterobacteriaceae: an Evolving Crisis of Global Dimensions. CMS. 2012;25(4):682-707.

Pournaras S, Kock R, Mossialos D, Mellmann A, Sakellaris V, Stathopoulos C, et al. Detection of a Phylogenetically Distintc IMP-type Metallo-β-Lactamase, IMP-35, In a CC235 Pseudomonas aeruginosa From the Dutch-German Border Region (Euregio). J Antimicrob Chemother. 2013;1271-1276.

Yano H, Ogawa M, Endo S, Kakuta R, Kanamori H, Inomata S, et al. High frequency of IMP-6 among clinical isolates of metallo-β-lactamase-producing Escherichia coli in Japan. Antimicrob Agents Chemother. 2012;56(8):4554-5.

CLSI. Performance standards for antimicrobial susceptibility testing; 19th informational supplement. CLSI standard M100-S19. Wayne, PA: Clinical and Laboratory Standards Intitute. 2009.

Gaibani P, Ambretti S, Berlingeri A, Cordovana M, Farruggia P, Panico M, et al. Out-break of NDM-1-producing Enterobacteriaceae in northern Italy, July to August 2011. Euro Surveill. 2011;16(47):20027.

Ghamgosha M, Shahrekizahedani S, Kafilzadeh F, Bamer IZ, Taheri RA, Farnoosh G. Metallo-β-Lactamase VIM-1, SPM-1, and IMP-1 Genes among Clinical Pseudomonas aeruginosa Species Isolated in Zahedan, Iran. Jundishapur J Microbiol. 2015;8(4):1-5.

Chika E, Charles E, Ifeanyichukwu I, Okeh ID, Malachy U, Michael A, et al. Molecular Identification of MBL Genes blaIMP-1 and blaVIM-1 in Escherichia coli Strains Isolated from Abattoir by Multiplex PCR Technique. Res. J. Microbiol. 2017;12(4):266-273.

Stuart L, Douglas W, Qiwen Y, Valerie D, Minjun C, Yingchun X. Involvement of MarR and YedS in Carbapenem Resistance in a Clinical Isolate of Escherichia coli from China. Antrimicrobial Agents and Chemoterapy. 2013;57(4):1935-1937.

Nairoukh YR, Mahafazah AM, Irshaid A, Shehabi AA. Molecular Characterization of Multidrug Resistant Urophatogenic E.coli Isolates From Jordanian Patients. The Open Microbiology Journal. 2018;12:1-7.

Lee K, Lim YS, Yong D, Yum JH, Chong Y. Evaluation of the Hodge Test and the Imipenem-EDTA Double-Disk Synergy Test for Differentiating Metallo-β-Lactamase-Producing Isolates of Pseudomonas spp. and Acinetobacter spp. J. Clin. Microbiol. 2003;41(10):4623-4629.

Mosavian M, Rahimzadeh M. Molecular Detection of Metallo-β-Lactamase genes, IMP-1, VIM-2, and SPM-1 in Imipenem Resistant Pseudomonas aeruginosa Isolated From Clinical Specimens in Teaching Hospitals of Ahvaz, Iran. Iran. J. Microbiol. 2014;7(1):2-6.

Bhaskar MM, Anand R, Harish BN. Prevalence of blaNDM-1 producing blood isolates of Escherichia coli, Klebsiella species and Enterobacter species in a tertiary care centre in South India. J Microbiol Res Rev. 2013;1(6):61-8.

Sangeetha KT, Golia S, Vasudha CL. Phenotypic detection of metallo beta-lactamase in Gram-negative bacterial isolates. CIBTech J Microbiol 2014;3(1):5-10.

Basireddy S, Singh M, Reddy H, Ali S, Kabra V. Metallo-β-Lactamase producing clinical isolates in a tertiary care hospital. Int J Sci Res. 2014;3(10):1324-6.

Altun Ş, Tufan ZK, Yağcı S, Önde U, Bulut C, Kınıkl S, et al. Extended Spectrum Beta-lactamases, AmpC and metallo beta-lactamases in emerging multi-drug resistant Gram-negative bacteria in intensive care units. 2013;2(4):1-4.

Soleha TU. Uji Kepekaan Terhadap Antibiotik. Juke Unila. 2015;5(9):119-123.

Wardhani A.“Perbandingan Hasil Identifikasi Yeast dengan Menggunakan Biokimia Otomatis (Vitek®2) dan MALDI-TOF MS (Vitek®MS)” (Skripsi). Surakarta: Universitas Sebelas Maret. 2018.


No Supplementary Material available for this article.
Article Views      : 0
PDF Downloads : 0