Original Articles

Ethanolic extract of grape (Vitis vinifera) prevents bone defect in the overtraining-induced rat

Ferbian Milas Siswanto , Iftitah Yuniar Sasanthi, Hendro Sukoco, Alex Pangkahila

Ferbian Milas Siswanto
Department of Biotechnology; Faculty of Health, Science, and Technology; Dhyana Pura University, Indonesia. Email: ferbianms@undhirabali.ac.id

Iftitah Yuniar Sasanthi
Student in Master Program of Biomedicine, Faculty of Medicine, Udayana University, Indonesia

Hendro Sukoco
Department of Animal Husbandry and Fisheries, University of West Sulawesi, Indonesia

Alex Pangkahila
Department of Sport Physiology, Faculty of Medicine, Udayana University, Indonesia
Online First: May 15, 2021 | Cite this Article
Siswanto, F., Sasanthi, I., Sukoco, H., Pangkahila, A. 2021. Ethanolic extract of grape (Vitis vinifera) prevents bone defect in the overtraining-induced rat. Indonesia Journal of Biomedical Science 15(1): 56-59. DOI:10.15562/ijbs.v15i1.263


Introduction. Excessive physical activity can lead to an early aging and degenerative disease such as osteoporosis characterized by decreasing bone density and the number of osteoblasts and increasing the number of osteoclasts. This study aimed to examine the activity of grapes ethanol extract to prevent bone damage in overtraining-induced rats.

Methods. The study design was experimental research using a completely randomized posttest-only control group design. Subjects were 36 male albino rats, aged 2.5 months, weighing 180-200 grams divided randomly into two groups. Control group (n= 18) was treated with overtraining + placebo for three weeks and the treatment group (n= 18) was treated with overtraining + 1.25 g/kgBW grapes ethanol extract for three weeks.

Results. The result showed that the average number of osteoblasts in the control group after treatment was 125.44 ± 7.770 cells per field of view, while in the treatment group was 137.06 ± 12.037 cells per field of view (p<0.01). The control group's bone density was lower than the treatment group (308.84 ± 17.195 vs. 438.11 ± 25.940 μm, p<0.01). In contrast, the number of osteoclasts in the control group after 14 days was higher than the treatment group (19.89 ± 3.411 vs. 13.33 ± 4.485 cells per field of view, p<0.01).

Conclusion. This study suggests that grape extract's antioxidant capacity can prevent a bone defect in the overtraining-induced rat.

References

Nyandra, M., Kartiko, B. H., Arunngam, P., Pangkahila, A. & Siswanto, F. M. Overtraining Induces Oxidative Stress Mediated Renal Damage in Male Wistar Rats. Transylvanian Rev. 26, 7659–7666 (2018).

Kartiko, B. H. & Siswanto, F. M. Overtraining elevates serum protease level, increases renal p16INK4α gene expression and induces apoptosis in rat kidney. Sport Sci. Health 14, 1–7 (2018).

McClanahan, B. S. et al. Bone mineral density in triathletes over a competitive season. J. Sports Sci. 20, 463–9 (2002).

Pangkahila, E., Linawati, N. M., Sugiritama, I. W. & Siswanto, F. M. Pelatihan Fisik Berlebih Meningkatkan Indeks Apoptosis pada Hepatosit Tikus (Rattus norvegicus) Wistar Jantan. J. Biomedik 11, 144–149 (2019).

Zenitalia, Pangkahila, A., Pangkahila, W. & Siswanto, F. M. Pelatihan Fisik Berlebih Menurunkan Jumlah Hematopoietic Stem Cells (HSCs) Dibandingkan Pelatihan Fisik Seimbang pada Tikus (Rattus norvegicus) Wistar Jantan. J. Biomedik 10, 16–23 (2018).

Hackney, A. C. & Koltun, K. J. The immune system and overtraining in athletes: clinical implications. Acta Clin. Croat. 51, 633–41 (2012).

Tanskanen, M., Atalay, M. & Uusitalo, A. Altered oxidative stress in overtrained athletes. J. Sports Sci. 28, 309–17 (2010).

Manna, P., Sinha, M. & Sil, P. C. Aqueous extract of Terminalia arjuna prevents carbon tetrachloride induced hepatic and renal disorders. BMC Complement. Altern. Med. 6, 33 (2006).

Vali, B., Rao, L. G. & El-Sohemy, A. Epigallocatechin-3-gallate increases the formation of mineralized bone nodules by human osteoblast-like cells. J. Nutr. Biochem. 18, 341–7 (2007).

Rao, L. G., Kang, N. & Rao, A. V. Polyphenol Antioxidants and Bone Health: A Review. in Phytochemicals - A Global Perspective of Their Role in Nutrition and Health (2012). doi:10.5772/39287

Lean, J., Kirstein, B., Urry, Z., Chambers, T. & Fuller, K. Thioredoxin-1 mediates osteoclast stimulation by reactive oxygen species. Biochem. Biophys. Res. Commun. 321, 845–50 (2004).

Bai, X. C. et al. Oxidative stress inhibits osteoblastic differentiation of bone cells by ERK and NF-κB. Biochem. Biophys. Res. Commun. 314, 197–207 (2004).

Xia, E. et al. Biological Activities of Polyphenols from Grapes. Int. J. Mol. Sci. 11, 622–646 (2013).

Siswanto, F. M., Suryawan, I. W., Wirawan, T. H., Rochman, F. & Pangkahila, A. Ekstrak Buah Anggur Menurunkan Kadar Aspartate Transaminase Darah Mencit dengan Aktivitas Fisik Berlebih. Indones. Med. Veterinus 3, 192–199 (2014).

Tarnajaya, K., Pangkahila, A., Pangkahila, W. & Siswanto, F. M. Pemberian Ekstrak Daun Cincau (Mesona palustris BL) Meningkatkan Kadar Superoksida Dismutase (SOD) Tikus Wistar (Rattus norvegicus) Jantan yang Diinduksi Latihan Fisik Berlebih. J. Biomedik 10, 9–15 (2018).

Hybertson, B. M., Gao, B., Bose, S. K. & McCord, J. M. Oxidative stress in health and disease: The therapeutic potential of Nrf2 activation. Mol. Aspects Med. 32, 234–46 (2011).

Surh, Y. J. Nrf2, an essential component of cellular stress response, as a potential target of hormetic phytochemicals. J. Food Drug Anal. 20, 217–219 (2012).

Siswanto, F. M., Oguro, A., Arase, S. & Imaoka, S. WDR23 regulates the expression of Nrf2-driven drug-metabolizing enzymes. Drug Metab. Pharmacokinet. 35, 441–455 (2020).

Thimothe, J., Bonsi, I. A., Padilla-Zakour, O. I. & Koo, H. Chemical characterization of red wine grape (Vitis vinifera and Vitis interspecific hybrids) and pomace phenolic extracts and their biological activity against Streptococcus mutans. J. Agric. Food Chem. 55, 10200–7 (2007).

Baile, C. A. et al. Effect of resveratrol on fat mobilization. Ann. N. Y. Acad. Sci. 1215, 40–7 (2011).

Widhiantara, I. G., Arunngam, P. & Siswanto, F. M. Ethanolic Extract of Caesalpinia bonducella f. Seed Ameliorates Diabetes Phenotype of Streptozotocin- Nicotinamide-Induced Type 2 Diabetes Rat. Biomed. Pharmacol. J. 11, 1127–1133 (2018).

Fish, R., Danneman, P., Brown, M. & Karas, A. Anesthesia and Analgesia in Laboratory Animals. Anesthesia and Analgesia in Laboratory Animals (2008). doi:10.1016/B978-0-12-373898-1.X5001-3

Malatesta, M. Histological and Histochemical Methods - Theory and practice. Eur. J. Histochem. 60, 2639 (2016).

Cicchillitti, L., Fasanaro, P., Biglioli, P., Capogrossi, M. C. & Martelli, F. Oxidative stress induces protein phosphatase 2A-dependent dephosphorylation of the pocket proteins pRb, p107, and p130. J. Biol. Chem. 278, 19509–17 (2003).

Sengupta, S., Peterson, T. R. & Sabatini, D. M. Regulation of the mTOR Complex 1 Pathway by Nutrients, Growth Factors, and Stress. Mol. Cell 40, 310–22 (2010).

Shiohama, T. et al. Oxidative stress-induced JNK1 phosphorylation inhibits hedgehog signaling and osteoblast differentiation. Cell Biol. Int. Rep. 21, 53–62 (2014).

Huang, C. S. et al. Protection by chrysin, apigenin, and luteolin against oxidative stress is mediated by the Nrf2-dependent up-regulation of heme oxygenase 1 and glutamate cysteine ligase in rat primary hepatocytes. Arch. Toxicol. 87, 167–78 (2013).

Schmatz, R. et al. Effects of resveratrol on biomarkers of oxidative stress and on the activity of delta aminolevulinic acid dehydratase in liver and kidney of streptozotocin-induced diabetic rats. Biochimie 94, 374–83 (2012).

Yulyani, Aman, I., Pangkahila, W. & Siswanto, F. M. Pemberian resveratrol oral mencegah peningkatan F2-Isoprostan urin tikus Wistar (Rattus norvegicus) jantan yang dipapar tartrazine. J. Biomedik 9, 24–29 (2017).

He, N. et al. Resveratrol inhibits the hydrogen dioxide-induced apoptosis via Sirt 1 activation in osteoblast cells. Biosci. Biotechnol. Biochem. 79, 1779–86 (2015).

Youl, E. et al. Quercetin potentiates insulin secretion and protects INS-1 pancreatic -cells against oxidative damage via the ERK1/2 pathway. Br. J. Pharmacol. 161, 799–814 (2010).

Zhang, M. et al. Antioxidant Properties of Quercetin. Adv Exp Med Biol. 701, 283–289 (2011).

Shi, J., Yu, J., Pohorly, J. E. & Kakuda, Y. Polyphenolics in Grape Seeds—Biochemistry and Functionality. J. Med. Food 6, 291–9 (2004).

Ishida, I., Kohda, C., Yanagawa, Y., Miyaoka, H. & Shimamura, T. Epigallocatechin gallate suppresses expression of receptor activator of NF-κB ligand (RANKL) in Staphylococcus aureus infection in osteoblast-like NRG cells. J. Med. Microbiol. 56, 1042–6 (2007).


No Supplementary Material available for this article.
Article Views      : 0
PDF Downloads : 0