Original Articles

Correlation of bacterial index to zinc serum level in multibacillary type leprosy patient

Dhelya Widasmara , Nesa Wike Wilanti, Tantari SHW

Dhelya Widasmara
Dermatology and Venereology Department, Faculty of Medicine, Universitas Brawijaya-Dr. Saiful Anwar Hospital, Malang, Indonesia. Email: dhelyawidasmara@ub.ac.id

Nesa Wike Wilanti
Dermatology and Venereology Department, Faculty of Medicine, Universitas Brawijaya-Dr. Saiful Anwar Hospital, Malang, Indonesia

Tantari SHW
Dermatology and Venereology Department, Faculty of Medicine, Universitas Brawijaya-Dr. Saiful Anwar Hospital, Malang, Indonesia
Online First: February 10, 2021 | Cite this Article
Widasmara, D., Wilanti, N., SHW, T. 2021. Correlation of bacterial index to zinc serum level in multibacillary type leprosy patient. Indonesia Journal of Biomedical Science 15(1): 33-38. DOI:10.15562/ijbs.v15i1.287


Background: Leprosy Multibacillary type is the leading source of infection because total of bacteria is high. Zinc is an essential trace element of viability of host or pathogen. This research aimed to determine the relationship between bacterial index with zinc serum level in patients with leprosy multibacillary type.

Methods: It was cross-sectional observational analytic research in 31 subjects selected using consecutive sampling and they met inclusion and exclusion criteria conducted in Outpatient Installation at RSUD Dr. Saiful Anwar Malang and RS Kusta Kediri in February to March 2019. Examination of acid-resistant bacteria used Ziehl Neelsen's staining method and measurement based on Ridley and Joplin. Test/examination of zinc serum level was conducted in Prodia Laboratory using Inductively Coupled Plasma-Mass Spectrometer (ICP-MS). data were analyzed statistically using program of Statistical Package for Social Sciences (SPSS) version 24.

Results: From 31 research subjects, it was obtained that the lowest bacteria index of 1+ and the highest bacteria index of 6+ with median value of 3.5±2. the average of zinc serum level was 61.81±13.28 µg/dL with the lowest level of 37.00 µg/dL and the highest of 94.00 µg/dL. Based on Spearman correlation test, it was obtained correlation value of - 0.557 (55.7%) and value p = 0.001.

Conclusion: There is a significant correlation between bacteria index and zinc serum level with strong closeness value. Correlation is negative, the higher bacteria index, the lower zinc serum level.

References

Suzuki K, Akama T, Kawashima A, Yoshihara A, Yotsu RR, and Ishii N. Current Status of Leprosy: Epidemiology, Basic Science and Clinical Perspectives. J Dermatol. 2012;39(2):121-9.

Indonesian Ministry of Health. Infodatin: Remove stigma towards leprosy. Jakarta: Center of Information Ministry of Health. 2018. p. 1-11.

Thorat DM. Epidemiology (of Leprosy). In: HK Kar and Bhushan Kumar IAL Text Book of Leprosy Ch. 3 Eds. New Delhi: Jaypee Brothers Medical Publishers (P) Ltd. 2009. p. 24-31.

Sutedja EK, Agusni JH, Dharmadji HP. Correlation between IL-10 serum and bacterial index in leprosy. BIKKK. 2016;28(1):16-22.

Lee DJ, Rea TH, and Modlin RL. Leprosy. In: Freedberg IM, Elsen AZ, Wolff K, Fitzpatricks Dermatology In General Medicine. 8th ed. NewYork: McGraw-Hill. 2012. p. 2253-62.

Wątły J, Potocki S, and Rowińska‐Żyrek, M. Zinc Homeostasis at the Bacteria/Host Interface—from Coordination Chemistry to Nutritional Immunity. Chem Eur J. 2016;22(45):15992-6010.

Gammoh NZ and Rink L. Zinc in Infection and Inflammation. Nutrients. 2017;9(6):624-628.

Jain A, Mukherjee A, Chattopadhya D, and Saha K. Biometals in Skin and Sera of Leprosy Patients and Their Correlation to Trace Element Contents of M. leprae and Histological Types of the Disease, a Comparative Study with Cutaneous Tuberculosis. Int J Lepr Other Mycobact Dis. 1995;63:249-249.

Dhana PK, Darmaputra IGN, Wardhana M. Zinc serum and monocyte count in leprosy in Sanglah General Hospital. Medicina. 2012;(43):163-8.

Mathur NK, Sharma M, Mangal HN, and Rai SM. Serum Zinc Levels in Subtypes of Leprosy. Inter J Lepr. 1984;52(3):327-30.

Nurkasanah S, Wahyuni CU, dan Wibowo A. Faktor yang Berpengaruh Terhadap Kenaikan Titer Antibodi Spesifik Kusta. JBE. 2013;1(2):213–223.

Mad'aric A, Ginter E, and Kadrabova J. Serum Copper, Zinc and Copper/Zinc Ratio in Males: Influence of Aging. Physiol Res. 1994;43:107-11.

Romero CD, Sanchez PH, Blanco FL, Rodríguez ER, and Majem LS. Serum Copper and Zinc Concentrations in a Representative Sample of the Canarian Population. J Trace Elem Med Bio. 2002;16(2):75-81.

Ramona F, Prakoeswa S, dan Sutrisna EM. Leprosy: An Overview of Epidemiology and Risk Factor in Indonesia. J.Bio.Innov. 2017;6(6):991-5.

Nepal AK, Gelal B, Mehta K, Lamsal M, Pokharel PK, and Baral N. Plasma Zinc Levels, Anthropometric and Socio Demographic Characteristics of School Children in Eastern Nepal. BMC Research Notes 2014;7(1):18-22.

Kosasih A. Principle of Dermatology and Venereology. Jakarta: FKUI Publishing. 2007. p. 73-88.

Pinheiro RO, de Souza Salles J, Sarno EN, and Sampaio EP. Mycobacterium Leprae–Host-Cell Interactions and Genetic Determinants in Leprosy: an Overview. Future Microbiology, 2011;6(2):217-30.

Rahfiludin MZ, Saraswati LD, and Ginandjar P. Duration of Contact, Type of Leprosy, and Floor Condition as Risk Factors for Leprosy Sero-positivity. KEMAS. 2017;13(2):169-77.

Zenha E, Ferreira M, and Foss N. Use of Anti-PGL-1 Antibodies to Monitor Therapy Regimens in Leprosy Patients. Braz J Med Biol Res. 2009;42(10):968-72.

Tamura T, Goldenberg RL, Johnston KE, and Chapman VR. Relationship Between Pre-Pregnancy BMI and Plasma Zinc Concentrations in Early Pregnancy. Br J Nutr. 2004;91(5):773-7.

Thamaria N. Assesment of Clinical Nutrition. PPSDMKI-Indonesian Ministry of Health. 2017. p.109-25.

Roohani N, Hurrell R, Kelishadi R, Schulin R. Zinc and its importance for human health: An integrative review. J Res Med Sci. 2013;18(2):144-57.

Linder MC. Nutritional Biochemistry and Metabolism with Clinical Application 2nd Ed. New York: Elsevier. 1991. p. 279-84.

Wildayani D, dan Yusrawati AH. Pengaruh Pemberian Tablet Zink dan Besi terhadap Kadar Hemoglobin dan Feritin pada Ibu Hamil Anemia Defisiensi Besi. JKA. 2018; 7(4): 1-5.

Lu J, Stewart AJ, Sadler PJ, Pinheiro TJ, and Blindauer CA. Albumin as a Zinc Carrier: Properties of Its High-Affinity Zinc-Binding Site. Clin Chim Acta, 2008; 142: 273-80.

Wang Y, Jia XF, Zhang B, Wang ZH, Zhang JG, Huang FF, Su C, Ouyang YF, Zhao J, Du WW, Li L, Jiang HR, Zhang J, Wang HJ. Dietary Zinc Intake and Its Association with Metabolic Syndrome Indicators among Chinese Adults: An Analysis of the China Nutritional Transition Cohort Survey 2015. Nutrients. 2018;10(5):572-578

Sehgal VN, Joginder MBBS. Slit-Skin Smear in Leprosy. ‎Int J Dermatol. 1990;29(1):9-16

Barisch C, Kalinina V, Lefrancois LH, Appiah J, and Soldati T. Think Zinc: Role of Zinc Poisoning in the Intraphagosomal Killing of Bacteria by the Amoeba Dictyostelium. bioRxiv. 2018. p 1-17.

Aydemir TB, Liuzzi JP, McClellan S, and Cousins RJ. Zinc Transporter ZIP8 (SLC39A8) and Zinc Influence IFN‐γ Expression in Activated Human T Cells. J Leukoc Biol. 2009;86(2): 337-48.

Agranoff DD, and Krishna S. Metal Ion Homeostasis and Intracellular Parasitism. Mol. Microbiol. 1998;28(3):403-412.

Hood MI, Skaar EP. Nutritional Immunity: Transition Metals at the Pathogen–Host Interface. Nat Rev Microbiol. 2012;10(8):525-529.

Pradhan T, and Kumari S. Evaluation of Oxidative Status and Zinc Level in Leprosy Patients After Zinc Supplementation. Int J Biol Med Res. 2015;6(2):4984-87.

Stafford SL, Bokil NJ, Achard ME, Kapetanovic R, Schembri MA, McEwan AG, Sweet MJ. Metal ions in macrophage antimicrobial pathways: emerging roles for zinc and copper. Biosci Rep. 2013 Jul 16;33(4):e00049.

Pyle CJ. Impact of Macrophage Zinc Metabolism on Host Defense Against Mycobacterium Tuberculosis. [Dissertation]. The Ohio State University. Ohio; 2016.


No Supplementary Material available for this article.
Article Views      : 0
PDF Downloads : 0