Skip to main content Skip to main navigation menu Skip to site footer

Nano extract of Coriandrum sativum l (ketumbar seed) decrease malondialdehyde (MDA) and blood glucose, and increase superoxide dismutase (SOD) in hyperglycaemic wistar rats


Introduction: Coriandrum sativum L (ketumbar seeds) nano extract was prepared using chitosan as a nano extract framework and tripolyphosphate as a stabilizer by ionic gelatin method. This study aimed to reduce free radicals in streptozotocin-induced hyperglycaemic rats by administering Coriandrum sativum L nano extract as nano herbal.

Methods: Characterization of the resulting nano extract was performed using Fourier Transformation Infra-Red (FTIR). The ability of nano extract as antihyperglycemic on streptozotocin-induced rats was tested using the randomized post-test only control group design research by observing the levels of blood glucose, MDA, and SOD as markers of oxidative stress.

Results: The phytochemical test showed that Coriandrum sativum L extracts contained polyphenols, flavonoids, alkaloids, and terpenoids. Characterization with PSA strongly supports nano extract as a delivery system for bioactive substances with a zeta potential of -25.80 mV and a particle size of 455.20 nm. The result of the antihyperglycemic test showed that oral administration at a dose of 50 mg/Kg BW/day gave the best result for decreasing glucose blood and MDA, and increasing SOD level in hyperglycaemic rats. LCMS/MS analysis showed that in ethanol extract of Coriandrum sativum L are suspected to contain the 7 compounds: DL-Valine, indoline, 2-quinolinol, trans-tnrthole, luteolin, apigenin, linoliamide, and luteolinin are compounds known in to be able to lower blood glucose and malondialdehyde.

Conclusion: Coriandrum sativum L (ketumbar seeds) nano extract was prepared using chitosan had potential to decrease MDA and blood glucose, and increase SOD level in hyperglycaemic rats.



  1. Duan Y, Sun X, Liu J, Fu J, Wang G. Different Analysis of β -Cell Dysfunction as Fasting Glucose Progresses in Obese and Nonobese Newly Diagnosed Type 2 Diabetic Patients. J Diabetes Res. 2019;2019.
  2. Ojo O. Recent advances in nutrition and diabetes. Nutrients. 2021;13(5):95–7.
  3. Wang T yang, Li Q, Bi K shun. Bioactive flavonoids in medicinal plants: Structure, activity and biological fate. Asian J Pharm Sci [Internet]. 2018;13(1):12–23. Available from:
  4. Panche AN, Diwan AD, Chandra SR. Flavonoids: An overview. J Nutr Sci. 2016;5.
  5. Mohan S, Nandhakumar L. Role of various flavonoids: Hypotheses on novel approach to treat diabetes. J Med Hypotheses Ideas [Internet]. 2014;8(1):1–6. Available from:
  6. Detsi A, Kavetsou E, Kostopoulou I, Pitterou I, Pontillo ARN, Tzani A, et al. Nanosystems for the encapsulation of natural products: The case of chitosan biopolymer as a matrix. Pharmaceutics. 2020;12(7):1–68.
  7. Niculescu AG, Grumezescu AM. Applications of Chitosan-Alginate-Based Nanoparticles— An Up-to-Date Review. Nanomaterials. 2022;12(2).
  8. Nastiti N, Siahaan P. Pengaruh Berat Molekul Kitosan terhadap Efisiensi Enkapsulasi BSA (Bovine Serum Albumin) Menggunakan Agen Crosslink Na-TPP. J Kim Sains dan Apl. 2015;18(3):104–9.
  9. Roy P, Parveen S, Ghosh P, Ghatak K, Dasgupta S. Flavonoid loaded nanoparticles as an effective measure to combat oxidative stress in Ribonuclease A. Biochimie [Internet]. 2019;162:185–97. Available from:
  10. Tomaz AF, de Carvalho SMS, Barbosa RC, Silva SML, Gutierrez MAS, de Lima AGB, et al. Ionically crosslinked chitosan membranes used as drug carriers for cancer therapy application. Materials (Basel). 2018;11(10):1–18.
  11. Setyaningtyas T, Riyani K, Kurniasih M, Purwati, Masruroh S. Synthesis, characterization, antioxidant activity, and toxicity properties of tripolyphosphate crosslinked chitosan. Molekul. 2021;16(3):251–9.
  12. Widhiana Putra IK, Ganda Putra G., Wrasiati LP. Pengaruh Perbandingan Bahan dengan Pelarut dan Waktu Maserasi terhadap Ekstrak Kulit Biji Kakao (Theobroma cacao L.) sebagai Sumber Antioksidan. J Rekayasa Dan Manaj Agroindustri. 2020;8(2):167.
  13. Christinela Domithesa M, Kencana Putra IN, Sri Wiadnyani AAI. Pengaruh Jenis Pelarut Terhadap Aktivitas Antioksidan Ekstrak Daun Kejompot (Crassocephalum crepidioides) Menggunakan Metode Maserasi. J Ilmu dan Teknol Pangan. 2021;10(1):67.
  14. Bilia AR, Isacchi B, Righeschi C, Guccione C, Bergonzi MC. Flavonoids Loaded in Nanocarriers: An Opportunity to Increase Oral Bioavailability and Bioefficacy. Food Nutr Sci. 2014;05(13):1212–327.
  15. Persson I. Ferric Chloride Complexes in Aqueous Solution: An EXAFS Study. J Solution Chem [Internet]. 2018;47(5):797–805. Available from:
  16. Alfaridz F, Amalia R. Klasifikasi dan Aktivitas Farmakologi dari Senyawa Aktif Flavonoid. Farmaka. 2018;16(3):1–9.
  17. Parbuntari H, Prestica Y, Gunawan R, Nurman MN, Adella F. Preliminary Phytochemical Screening (Qualitative Analysis) of Cacao Leaves (Theobroma cacao L.). EKSAKTA Berk Ilm Bid MIPA. 2018;19(2):40–5.
  18. Cardoso ALBD, Frederico éric HFF, Guimarães CAS, Moura-Fernandes MC, Guedes-Aguiar EO, da Silva ALP, et al. Effects of Coriandrum sativum L. in association with physical exercise in alloxan-induced type 1 diabetes mellitus in rats. Appl Sci. 2019;9(24):1–11.
  19. Kumar Verma M, Singh SP, Alam R, Verma P. COMPARATIVE STUDY ON MDA, SOD AND HbA1c LEVELS IN PATIENTS OF TYPE 2 DIABETES MELLITUS WITH RETINOPATHY AND WITHOUT RETINOPATHY. Int J Pharm Sci Res [Internet]. 2016;7(10):4184. Available from:
  20. Tanko Y, Salisu AI, Mohammed KA, Musa SA, Jimoh A, Yusuf R. Anti-hyperglycaemic Effects of Rutin on Blood Glucose, Oxidative Stress Biomarkers and Lipid Peroxidation in Alloxan-induced Hyperglycaemic Wistar Rats. Niger J Physiol Sci. 2017;32(1):91–6.
  21. Alam MM, Meerza D, Naseem I. Protective effect of quercetin on hyperglycemia, oxidative stress and DNA damage in alloxan induced type 2 diabetic mice. Life Sci [Internet]. 2014;109(1):8–14. Available from:
  22. Jung H, Kim YY, Kim B, Nam H, Suh JG. Improving glycemic control in model mice with type 2 diabetes by increasing superoxide dismutase (SOD) activity using silk fibroin hydrolysate (SFH). Biochem Biophys Res Commun [Internet]. 2017;493(1):115–9. Available from:
  23. Arifin B, Ibrahim S. Struktur, Bioaktivitas Dan Antioksidan Flavonoid. J Zarah. 2018;6(1):21–9.
  24. Hao J, Guo B, Yu S, Zhang W, Zhang D, Wang J, et al. LWT - Food Science and Technology Encapsulation of the fl avonoid quercetin with chitosan-coated nano- liposomes. LWT - Food Sci Technol [Internet]. 2017;85:37–44. Available from:
  25. Ngadiwiyana. Jurnal Kimia Sains dan Aplikasi 21 (2) (2018): 92-97. J Kim sains dan Apl 21 [Internet]. 2018;2(2):92–7. Available from:
  26. Martien R, Adhyatmika, Irianto IDK, Farida V, Sari DP. Technology Developments Nanoparticles as Drug. Maj Farm. 2012;8(1):133–44.
  27. Marrif HI, Al-Sunousi SI. Pancreatic β cell mass death. Front Pharmacol. 2016;7(APR):1–16.

How to Cite

Sri Wahjuni, Ida Ayu Raka Astitiasih, Ni Made Puspawati, Mustika Lahaya, A.A. Bawa Putra, Ida Bagus Putra Manuaba, & Ahmad Fudholi. (2022). Nano extract of Coriandrum sativum l (ketumbar seed) decrease malondialdehyde (MDA) and blood glucose, and increase superoxide dismutase (SOD) in hyperglycaemic wistar rats . Indonesia Journal of Biomedical Science, 16(2), 140–147.




Search Panel