Skip to main content Skip to main navigation menu Skip to site footer

Adipose-Derived Stem Cells (ADSCs) in preconditioning of hypoxic cultures compared to normoxic cultures to prevent the formation of fibrous tissue: a review article

Abstract

Background: Stem cells are a key element in regenerative medicine for their ability to differentiate into various cell phenotypes. According to the literature review, one process that might improve the functionality of ADSCs is hypoxic culture conditions. Hypoxic oxygen culture conditions at 5% concentration are said to increase stem cell proliferation and viability after transplantation.

Methods: A comprehensive literature search was conducted by the author to obtain relevant studies from the PubMed, MEDLINE, Embase, PreMEDLINE, Embase, PsycINFO, Scopus, and Cochrane databases for the last twenty years (January 2002 – July 2022). The author used a search strategy with the following keywords: Adipose-Derived Stem Cells, hypoxic culture, normoxic culture, or pre-conditioned stem cells.

Discussion: Hypoxic culture preconditioning of ADSCs with an oxygen concentration of 5% can improve proliferation capabilities and stem cell viability post-transplantation. Hypoxic preconditioning will enhance the expression of HIF-1

Section

References

  1. Frese L, Dijkman PE, & Hoerstrup SP. Adipose tissue-derived stem cells in regenerative medicine. Transfusion Medicine and Hemotherapy. 2016;43(4):268–274.
  2. Safitri E, Hariadi M, Prasetyo RH. Stem Cell Kultur Kondisi Hipoksia Upaya Peningkatan Viabilitas dan Pemeliharaan Jangka Lama Sel Punca Diam. Airlangga University Press: Surabaya. 2019.
  3. Castiglione F, Dewulf K, Hakim L, Weyne E, Montorsi F, Russo A, et al. Adipose-derived Stem Cells Counteract Urethral Stricture Formation in Rats. European Urology. 2016;70(6):1032–1041.
  4. Halim D, Murti H, Sandra F, Boediono A, Djuwantono H, Setiawan B. Stem Cell Dasar Teori dan Aplikasi Klinis (R. Astikawati, Ed.). Erlangga Medical Series. 2010.
  5. Seo Y, Shin TH, Kim HS. Current strategies to enhance adipose stem cell function: An update. International Journal of Molecular Sciences. 2019;20(15):3287.
  6. Si Z, Wang X, Sun C, Kang Y, Xu J, Wang X, et al. Adipose-derived stem cells: Sources, potency, and implications for regenerative therapies. Biomedicine and Pharmacotherapy. 2019;114(2):108765.
  7. Palumbo P, Lombardi F, Siragusa G, Cifone MG, Cinque B, Giuliani M. Methods of isolation, characterization and expansion of human adipose-derived stem cells (ASCs): An overview. International Journal of Molecular Sciences. 2018;19(7):1897.
  8. Li JZ, Cao TH, Han JC, Qu H, Jiang SQ, Xie BD, et al. Comparison of adipose- and bone marrow-derived stem cells protecting against ox-LDL-induced inflammation in M1-makrofag-derived foam cells. Molecular Medicine Reports. 2019;19(4):2660–2670.
  9. Keating A. Mesenchymal stromal cells: New directions. In Cell Stem Cell. 2012;10(6):709–716.
  10. Djouad F, Charbonnier LM, Bouffi C, Louis-Plence P, Bony C, Apparailly F, et al. Mesenchymal Stem Cells Inhibit the Differentiation of Dendritic Cells Through an Interleukin-6-Dependent Mechanism. Stem Cells. 2007;25(8):2025–2032.
  11. Chaturvedi P, Gilkes DM, Takano N, Semenza GL. Hypoxia-inducible factor-dependent signaling between triple-negative breast cancer cells and mesenchymal stem cells promotes makrofag recruitment. Proceedings of the National Academy of Sciences of the United States of America. 2014;111(20):E2120-E2129.
  12. Nguyen PK, Riegler J, Wu JC. Stem cell imaging: from bench to bedside. Cell Stem Cell. 2014;14(4):431-444.
  13. Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood. 2005;105(4):1815-1822.
  14. Ceccarelli S, Pontecorvi P, Anastasiadou E, Napoli C, Marchese C. Immunomodulatory Effect of Adipose-Derived Stem Cells: The Cutting Edge of Clinical Application. Frontiers in Cell and Developmental Biology. 2020;8(4):1–12.
  15. Li P, Guo X. A review: therapeutic potential of adipose-derived stem cells in cutaneous wound healing and regeneration. Stem Cell Research & Therapy. 2018;9(1):1–7.
  16. Fotia C, Massa A, Boriani F, Baldini N, Granchi D. Hipoksia enhances proliferation and stemness of human adipose-derived mesenchymal stem cells. Cytotechnology. 2015;67(6):1073–1084.
  17. Van Pham P, Vu NB, Phan NK. Hipoksia promotes adipose-derived stem cell proliferation via VEGF. Biomedical Research and Therapy. 2016;3(1):476–482.
  18. Verhoekx JSN, Mudera V, Walbeehm ET, Hovius SER. Adipose-derived stem cells inhibit the contractile myofibroblast in Dupuytren's disease. Plastic and Reconstructive Surgery. 2013;132(5):1139–1148.
  19. Wang L, Hu L, Zhou X, Xiong Z, Zhang C, Shehada HMA, et al. Exosomes secreted by human adipose mesenchymal stem cells promote scarless cutaneous repair by regulating extracellular matrix remodeling. Scientific Reports. 2017;7(1):1–12.
  20. Xu L, Wang X, Wang J, Liu D, Wang Y, Huang Z, et al. Hipoksia-induced secretion of IL-10 from adipose-derived mesenchymal stem cells promotes growth and cancer stem cell properties of Burkitt lymphoma. Tumor Biology. 2016;37(6):7835–7842.
  21. Sumarwoto T, Suroto H, Mahyudin F, Utomo DN, Romaniyanto, Prijosedjati A, et al. Preconditioning of hypoxic culture increases the therapeutic potential of adipose-derived mesenchymal stem cells. Open Access Macedonian Journal of Medical Sciences. 2021;31(9):505–515.
  22. Greijer AE, van der Wall E. The role of hypoxia inducible factor 1 (HIF-1) in hypoxia induced apoptosis. Journal of Clinical Pathology. 2004;57(10):1009–1014.
  23. Lavrentieva A, Majore I, Kasper C, Hass R. Effects of hypoxic culture conditions on umbilical cord-derived human mesenchymal stem cells. Cell Communication and Signaling. 2010;8(1):1-9.
  24. Brahimi-Horn MC, Pouysségur J. Oxygen, a source of life and stress. FEBS Letters. 2007;581(19):3582–3591.
  25. Sordi V, Malosio ML, Marchesi F, Mercalli A, Melzi R, Giordano T, et al. Bone marrow mesenchymal stem cells express a restricted set of functionally active chemokine receptors capable of promoting migration to pancreatic islets. Blood. 2005;106(2):419-427.
  26. Song CH, Honmou O, Fukuoka H, Horiuchi M. Identification of Chemoattractive Factors Involved in the Migration of Bone Marrow-Derived Mesenchymal Stem Cells to Brain Lesions Caused by Prions. Journal of Virology. 2011;85(21):11069–11078.
  27. Wynn RF, Hart CA, Corradi-Perini C, O’Neill L, Evans CA, Wraith JE, et al. A small proportion of mesenchymal stem cells strongly expresses functionally active CXCR4 receptor capable of promoting migration to bone marrow. Blood. 2004;104(9):2643–2645.
  28. Pramana IBP, Oka AAG, Astawa INM, Mahadewa TGB. Adipose-Derived Stem Cells (ADSCs): a review article. Bali Medical Journal. 2021;10(3):881–886.
  29. Kim JW, Tchernyshyov I, Semenza GL, Dang CV. HIF-1-mediated expression of pyruvate dehydrogenase kinase: A metabolic switch required for cellular adaptation to hypoxia. Cell Metabolism. 2006;3(3):177–185.
  30. Haque N, Rahman MT, Abu Kasim NH, Alabsi AM. Hypoxic culture conditions as a solution for mesenchymal stem cell-based regenerative therapy. Scientific World Journal. 2013:2013(1):1-13.
  31. Prabawa IPY, Lestari AAW, Muliarta IM, Mardhika PE, Pertiwi GAR, Bhargah A, et al. The Stromal Cell-derived Factor-1/CXCL12 3’A-gene Polymorphism is Related to the Increased Risk of Coronary Artery Disease: A Systematic Review and Meta-analysis. Open Access Macedonian Journal of Medical Sciences. 2020;8(F):197-202.
  32. Putri WE, Endaryanto A, Tinduh D, Rantam F, Alinda MD, Prakoeswa CRS. Growth factors of hypoxia Freeze-Dried Adipose Stem Cell- Conditioned Medium (FD ASC-CM) and Fresh Adipose Stem Cell Conditioned-Medium (FR ASC-CM): a comparative study. Bali Medical Journal. 2021;10(2):683–687.
  33. Alinda MD, Christopher PM, Listiawan MY, Endaryanto A, Suroto H, Rantam FA, et al. Comparative efficacy of topical Adipocyte-derived Mesenchymal Stem Cells-Conditioned Medium (ADMSC-CM) and Amniotic Membrane Mesenchymal Stem Cells-Conditioned Medium (AMSC-CM) on chronic plantar ulcers in leprosy: a randomized controlled trial. Bali Medical Journal. 2021;10(3): 958–963.

How to Cite

Pramana, I. B. P., Duarsa, G. W. K., Mahadewa, T. G. B., & Widiana, I. G. R. (2023). Adipose-Derived Stem Cells (ADSCs) in preconditioning of hypoxic cultures compared to normoxic cultures to prevent the formation of fibrous tissue: a review article. Indonesia Journal of Biomedical Science, 17(2), 141–146. https://doi.org/10.15562/ijbs.v17i2.454

HTML
92

Total
112

Share

Search Panel

Ida Bagus Putra Pramana
Google Scholar
Pubmed
IJBS Journal


Gede Wirya Kusuma Duarsa
Google Scholar
Pubmed
IJBS Journal


Tjokorda Gde Bagus Mahadewa
Google Scholar
Pubmed
IJBS Journal


I Gde Raka Widiana
Google Scholar
Pubmed
IJBS Journal