Skip to main content Skip to main navigation menu Skip to site footer

Effect of Sargassum polycystum on Expression of Tyrosinase and Production of Melanin

  • Kusuma Sri Whisnu Puteri ,
  • I Wayan Juli Sumadi ,


Introduction: Melanogenesis, the process responsible for producing melanin pigment, hinges on the activation of the amino acid L-tyrosine by the pivotal enzyme tyrosinase. In cases of hyperpigmentation induced by ultraviolet radiation, there's a surge in both tyrosinase enzyme levels and melanin production. Sargassum polycystum is currently under active investigation for its potential in this regard. This review aims to delve deeper into the properties of Sargassum polycystum and its impact on tyrosinase expression and melanin production.

 Literature Review: Sargassum polycystum, a brown seaweed commonly found in coastal regions with abundant coral reefs, harbors active compounds like flavonoids, fucoidan, fucoxanthin, and phloroglucinol. Fucoidan, an extract from brown seaweed, exhibits promising anti-inflammatory and antioxidant properties. Recent studies have revealed its ability to impede the melanogenesis process. Specifically, it was observed that fucoidan from brown seaweed extract could dampen α-MSH stimulation while enhancing the activation of the ERK-MAPK pathway, thereby acting as a negative regulator for melanogenesis. Fucoxanthin, another component, showcases antioxidant capabilities. Furthermore, phloroglucinol, found in Sargassum polycystum, exerts tyrosinase inhibitory effects by chelating copper within the enzyme. Flavonoids like catechin, hesperidin, kaempferol, and baicalein in Sargassum polycystum demonstrate inhibitory effects on melanogenesis activation pathways, including suppression of the Erk1/2 pathway, MiTF, and direct inhibition of tyrosinase. Consequently, this leads to reduced tyrosinase expression and melanin production, ultimately attenuating the melanogenesis process.

 Conclusion: Sargassum polycystum emerges as a promising candidate for combating hyperpigmentation induced by exposure to ultraviolet B radiation.



  1. Solano F. 2020. Photoprotection and Skin Pigmentation: Melanin-Related Molecules and Some Other New Agents Obtained from Natural Sources. Molecules. 2020; 25(7): 1537.
  2. Schlessinger D, Anoruo M, Schlessinger J. Biochemistry, Melanin. StatPearls Publishing. 2022. Available at:
  3. Lee AY. Skin pigmentation abnormalities and their possible relationship with skin aging. International Journal of Molecular Sciences. 2021; 22(7): 3727.
  4. El-Nashar HA, et al. Insights on the inhibitory power of flavonoids on tyrosinase activity: A survey from 2016 to 2021. Molecules. 2021; 26(24): 7546.
  5. Sipahutar YH, Albaar N, Purnamasari HB, Kristiany MG, Prabowo DHG. Seaweed extract (Sargassum polycystum) as a preservative on sunscreen cream with the addition of seaweed porridge. IOP Conference Series: Earth and Environmental Science. 2019; 278(1): 012072).
  6. Charoo NA. Hyperpigmentation: Looking beyond hydroquinone. Journal of Cosmetic Dermatology. 2022; 21(10): 4133 – 4145.
  7. Schwartz C, Jan A, Zito PM. Hydroquinone. StatPearls Publishing. 2023.
  8. Guiry MD, Guiry GM. Algaebase. National University of Ireland. Galway. 2010.
  9. Chan SW, Cheang CC, Chirapart A, Gerung G, Tharith C, Ang P. Homogeneous population of the brown alga Sargassum polycystum in Southeast Asia: possible role of recent expansion and asexual propagation. PloS one. 2013; 8(10): e77662.
  10. Palanisamy S, Vinosha M, Rajasekar P, Anjali R, Sathiyaraj G, Marudhupandi T, Selvam S, Prabhu NM, You S. Antibacterial efficacy of a fucoidan fraction (Fu-F2) extracted from Sargassum polycystum. International Journal of Biological Macromolecules. 2019; 125: 485 – 495.
  11. Chan YY, Kim KH, Cheah SH. Inhibitory effects of Sargassum polycystum on tyrosinase activity and melanin formation in B16F10 murine melanoma cells. Journal of Ethnopharmacology. 2011; 137(3): 1183 – 1188.
  12. Cordero RJB, Casadevall A. Melanin. Current Biology. 2020; 30(4): R142 – R143.
  13. Handel AC, Miot LDB, Miot HA. Melasma: a clinical and epidemiological review. An Bras Dermatol. 2014; 89(5): 771 – 82.
  14. Slominski RM, et al. Melanoma, melanin, and melanogenesis: The Yin and Yang relationship. Frontiers in Oncology. 2022; 12.
  15. Lai X, Wichers HJ, Soler‐Lopez M, Dijkstra BW. Structure and function of human tyrosinase and tyrosinase‐related proteins. Chemistry. 2018; 24(1): 47 – 55.
  16. Chang TS. Natural Melanogenesis Inhibitor Acting Through The Down-Regulation of Tyrosinase Activity. Materials. 2012; 5: 1661 – 1685.
  17. Kang S, et al. Fitzpatrick’s dermatology. New York: McGraw-Hill Education. 2019.
  18. Park HY, Yaar M. Biology of melanocytes. In: Goldsmith LA, Katz SI, Gilchrest BA, Paller AS, Leffell DJ, Wolff K (eds.) Fitzpatrick’s Dermatology in General Medicine. 8th ed. New York: McGraw Hill; p. 795 – 81.
  19. Wiraguna AAGP. Aspek Anatomi dan Fisiologi Kulit. First Edition. Denpasar: Udayana University Press. p. 49-71. 2020.
  20. Nazarudin MF, Alias NH, Balakrishnan S, Wan Hasnan WNI, Noor Mazli NAI, Ahmad MI, Md Yasin IS, Isha A, Aliyu-Paiko M. Chemical, Nutrient and Physicochemical Properties of Brown Seaweed, Sargassum polycystum C. Agardh (Phaeophyceae) Collected from Port Dickson, Peninsular Malaysia. Molecules. 2021; 26(17): 5216.
  21. Arsianti A, Bahtiar A, Wangsaputra VK, Azizah NN, Fachri W, Nadapdap LD, Fajrin AM, Tanimoto H, Kakiuchi K. Phytochemical composition and evaluation of marine algal Sargassum polycystum for antioxidant activity and in vitro cytotoxicity on hela cells. Pharmacognosy Journal. 2020; 12(1).
  22. Wu Y, Gao H, Wang Y, Peng Z, Guo Z, Ma Y, Zhang R, Zhang M, Wu Q, Xiao J, Zhong Q. Effects of different extraction methods on contents, profiles, and antioxidant abilities of free and bound phenolics of Sargassum polycystum from the South China Sea. Journal of Food Science. 2022; 87(3): 968 – 981.
  23. Jayawardena TU, Nagahawatta DP, Fernando IPS, Kim YT, Kim JS, Kim WS, Lee JS, Jeon YJ. A Review on Fucoidan Structure, Extraction Techniques, and Its Role as an Immunomodulatory Agent. Marine Drugs. 2022; 20(12): 755.
  24. Junaidi L. Simple Extraction and Molecular Weight Characterization of Fucoidan from Indonesian Sargassum sp. Biopropal Industri. 2013; 4(2).
  25. Karak P. Biological activities of flavonoids: An overview. International Journal of Pharmaceutical Sciences and Research. 2019; 10(4): 1567 – 1574.
  26. Liu-Smith F, Meyskens FL. Molecular mechanisms of flavonoids in melanin synthesis and the potential for the prevention and treatment of melanoma. Molecular Nutrition & Food Research. 2016; 60(6): 1264 – 1274.
  27. Swanson BG. Tannins and Polyphenols. In: Encylopedia of Food Sciences and Nutrition. 2003
  28. Liu Z, Sun X. A critical review of the abilities, determinants, and possible molecular mechanisms of seaweed polysaccharides antioxidants. International Journal of Molecular Sciences. 2020; 21(20): 7774.
  29. Fraga-Corral M, Otero P, Cassani L, Echave J, Garcia-Oliveira P, Carpena M. Traditional applications of tannin rich extracts supported by scientific data: Chemical composition, bioavailability and bioaccessibility. Foods. 2021; 10(2): 251.
  30. Wang L, Oh JY, Kim YS, Lee HG, Lee JS, Jeon YJ. Anti-Photoaging and Anti-Melanogenesis Effects of Fucoidan Isolated from Hizikia fusiforme and Its Underlying Mechanisms. Marine Drugs. 2020; 18(8): 427.
  31. Wang ZJ, Xu W, Liang JW, Wang CS, Kang Y. Effect of fucoidan on B16 murine melanoma cell melanin formation and apoptosis. African Journal of Traditional, Complementary and Alternative Medicines. 2017; 14(4): 149 – 155.
  32. Berthon J-Y, et al. Marine algae as attractive source to skin care. Free Radical Research. 2017; 51(6): 555 – 567.
  33. Santiyoga IKW, Suhendra L, Wartini NM. Karakteristik Ekstrak Alga Coklat (Sargassum polycystum) sebagai Antioksidan pada Perlakuan Perbandingan Pelarut Aseton dan Etilasetat. Jurnal Rekayasa dan Manajemen Agroindustri. 2020; 8(1): 91 – 104.
  34. Satyarsa AB. Potential of Fucoidan From Brown Seaweeds (Sargassum sp.) as Innovation Therapy on Breast Cancer. Journal of Medicine and Health. 2019;2(3).
  35. Cahyaningrum K, Husni AH, Budhiyanti SA. Aktivitas Antioksidan Rumput Laut Coklat (Sargassum polycystum). Agritech. 2016; 36(2): 137 – 144.
  36. Thomas N, Kim S-K. Beneficial effects of marine algal compounds in Cosmeceuticals. Marine Drugs. 2013; 11(12): 146 – 164.
  37. Lee H, et al. Hesperidin, a popular antioxidant inhibits melanogenesis via ERK1/2 mediated MITF degradation. International Journal of Molecular Sciences. 2015; 16(8): 18384 – 18395.
  38. Kadekaro AL, et al. Alpha-melanocyte–stimulating hormone suppresses oxidative stress through a p53-mediated signaling pathway in human melanocytes. Molecular Cancer Research. 2012; 10(6): 778 – 786.
  39. Fan M, et al. Relationships of dietary flavonoid structure with its tyrosinase inhibitory activity and affinity. LWT. 2019; 107: 25 – 34.
  40. Suryaningsih BE. Melanogenesis and its associated signalings. Bali Med J. 2020;9(1):327-31.

How to Cite

Puteri, K. S. W., & Sumadi, I. W. J. (2024). Effect of Sargassum polycystum on Expression of Tyrosinase and Production of Melanin. Indonesia Journal of Biomedical Science, 18(1), 55–60.




Search Panel

Kusuma Sri Whisnu Puteri
Google Scholar
IJBS Journal

I Wayan Juli Sumadi
Google Scholar
IJBS Journal