Skip to main content Skip to main navigation menu Skip to site footer

Effect of anthocyanins on obesity

  • I Wayan Surudarma ,
  • I Wayan Weta ,
  • Desak Made Wihandani ,
  • Gde Ngurah Indraguna Pinatih ,

Abstract

Obesity is a complex multifactorial disease characterized by excessive fat accumulation in the body. Obesity is caused by a chronic positive energy balance that is regulated by complex interactions between the endocrine and the central nervous system. The hypothalamus regulates energy balance by controlling appetite and satiety, regulating the rate of energy expenditure, and regulating hormone secretion. Leptin plays an important role in regulating appetite. Decreased leptin production or impaired receptor function in leptin resistance can increase the risk of obesity. Adiponectin plays an important role in peripheral stimulation to increase energy expenditure. Leptin and adiponectin have synergistic action to promote weight loss. The excessive increase in adipose tissue in obesity causes the secretion of pro-inflammatory cytokines. Pro-inflammation states can cause oxidative stress and chronic inflammation, which can disrupt the function of adipocyte cells in secreting leptin and adiponectin, which are important in the pathogenesis of obesity. Anthocyanins are flavonoid compounds that have been widely known as antioxidants and anti-inflammatory. Many studies have revealed that anthocyanins can also play an anti-obesity role. This review article will discuss the mechanism of action of anthocyanins as anti-obesity agents.

Section

References

  1. Gjermeni E, Kirstein A, Kolbig F, Kirchhof M, Bundalian L, Katzmann JL, et al. Obesity-An Update on the Basic Pathophysiology and Review of Recent Therapeutic Advances. 2021. DOI: https://doi.org/10.3390/biom11101426.
  2. Izquierdo AG, Crujeiras AB, Casanueva FF, Carreira MC. Leptin, obesity, and leptin resistance: where are we 25 years later? Nutrients. 2019;11(11). DOI: https://doi.org/10.3390/nu11112704.
  3. Hardie DG. AMPK: a key regulator of energy balance in the single cell and the whole organism. Int J Obes (Lond). 2008;32 Suppl 4:S7–12. DOI: https://doi.org/10.1038/ijo.2008.116.
  4. Stȩpień M, Stȩpień A, Wlazeł RN, Paradowski M, Banach M, Rysz J. Obesity indices and inflammatory markers in obese non-diabetic normo- and hypertensive patients: A comparative pilot study. Lipids Health Dis. 2014;13(1). DOI: https://doi.org/10.1186/1476-511x-13-29.
  5. Trayhurn P. Hypoxia and adipose tissue function and dysfunction in obesity. Physiol Rev. 2013;93(1):1–21. DOI: https://doi.org/10.1152/physrev.00017.2012.
  6. Reilly SM, Saltiel AR. Adapting to obesity with adipose tissue inflammation. Nat Rev Endocrinol 2017 1311. 2017;13(11):633–43. DOI: https://doi.org/10.1038/nrendo.2017.90.
  7. Ellulu MS, Patimah I, Khaza’ai H, Rahmat A, Abed Y. Obesity & inflammation: The linking mechanism & the complications. Arch Med Sci. 2017;13(4). DOI: https://doi.org/10.5114/aoms.2016.58928.
  8. Lauterbach MAR, Wunderlich FT. Macrophage function in obesity-induced inflammation and insulin resistance. Pflugers Arch. 2017;469(3):385. DOI: https://doi.org/10.1007/s00424-017-1955-5.
  9. Kratz M, Coats BR, Hisert KB, Hagman D, Mutskov V, Peris E, et al. Metabolic dysfunction drives a mechanistically distinct proinflammatory phenotype in adipose tissue macrophages. Cell Metab. 2014;20(4):614–25. DOI: https://doi.org/10.1016/j.cmet.2014.08.010.
  10. Marseglia L, Manti S, D’Angelo G, Nicotera A, Parisi E, Di Rosa G, et al. Oxidative stress in obesity: a critical component in human diseases. Int J Mol Sci. 2014;16(1):378–400. DOI: https://doi.org/10.3390/ijms16010378.
  11. Savini I, Catani MV, Evangelista D, Gasperi V, Avigliano L. Obesity-associated oxidative stress: Strategies finalized to improve redox state. Int J Mol Sci. 2013;14(5):10497–538. DOI: https://doi.org/10.3390/ijms140510497.
  12. Mattoo AK, Dwivedi SL, Dutt S, Singh B, Garg M, Ortiz R. Anthocyanin-Rich Vegetables for Human Consumption—Focus on Potato, Sweetpotato and Tomato. Int J Mol Sci 2022, Vol 23, Page 2634. 2022;23(5):2634. DOI: https://doi.org/10.3390/ijms23052634.
  13. Tena N, Martín J, Asuero AG. State of the Art of Anthocyanins: Antioxidant Activity, Sources, Bioavailability, and Therapeutic Effect in Human Health. Antioxidants 2020, Vol 9, Page 451. 2020;9(5):451. DOI: https://doi.org/10.3390/antiox9050451.
  14. Xie L, Su H, Sun C, Zheng X, Chen W. Recent advances in understanding the anti-obesity activity of anthocyanins and their biosynthesis in microorganisms. Trends Food Sci Technol. 2018;72(November 2017):13–24. DOI: https://doi.org/10.1016/J.TIFS.2017.12.002.
  15. Thiagarajan PS, Reizes O. Adipose Tissue-Derived Stem Cells in Regenerative Medicine and Impact on Cancer. Cancer Stem Cells Target Roots Cancer, Seeds Metastasis, Sources Ther Resist. 2016;411–38. DOI: https://doi.org/10.1016/B978-0-12-803892-5.00016-4.
  16. Wankhade UD, Shen M, Yadav H, Thakali KM. Novel Browning Agents, Mechanisms, and Therapeutic Potentials of Brown Adipose Tissue. Biomed Res Int. 2016;2016. DOI: https://doi.org/10.1155/2016/2365609.
  17. Tsiloulis T, Watt MJ. Exercise and the Regulation of Adipose Tissue Metabolism. Prog Mol Biol Transl Sci. 2015;135:175–201. DOI: https://doi.org/10.1016/bs.pmbts.2015.06.016.
  18. Unamuno X, Gómez-Ambrosi J, Rodríguez A, Becerril S, Frühbeck G, Catalán V. Adipokine dysregulation and adipose tissue inflammation in human obesity. Eur J Clin Invest. 2018;48(9). DOI: https://doi.org/10.1111/eci.12997.
  19. Coelho M, Oliveira T, Fernandes R. Biochemistry of adipose tissue: An endocrine organ. Vol. 9, Archives of Medical Science. 2013. DOI: https://doi.org/10.5114/aoms.2013.33181.
  20. Kwok TC, Symonds ME, Ojha S. Obesity/Perinatal Origins of Obesity. Matern Neonatal Endocrinol Physiol Pathophysiol Clin Manag. 2020;891–911. DOI: https://doi.org/10.1016/B978-0-12-814823-5.00051-9.
  21. Saponaro C, Gaggini M, Carli F, Gastaldelli A. The subtle balance between lipolysis and lipogenesis: A critical point in metabolic homeostasis. Vol. 7, Nutrients. Multidisciplinary Digital Publishing Institute (MDPI); 2015. p. 9453–74. DOI: https://doi.org/10.3390/nu7115475.
  22. Sanders FWB, Griffin JL. De novo lipogenesis in the liver in health and disease: more than just a shunting yard for glucose. Biol Rev Camb Philos Soc. 2016;91(2):452. DOI: https://doi.org/10.1111/brv.12178.
  23. Rosen H. Is Obesity A Disease or A Behavior Abnormality? Did the AMA Get It Right? Mo Med. 2014;111(2):104.
  24. Obradovic M, Sudar-Milovanovic E, Soskic S, Essack M, Arya S, Stewart AJ, et al. Leptin and Obesity: Role and Clinical Implication. Front Endocrinol (Lausanne). 2021;12. DOI: https://doi.org/10.3389/fendo.2021.585887.
  25. Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, Arcoraci V, et al. Oxidative Stress: Harms and Benefits for Human Health. Oxid Med Cell Longev. 2017;2017. DOI: https://doi.org/10.1155/2017/8416763.
  26. Di Meo S, Reed TT, Venditti P, Victor VM. Harmful and beneficial role of ROS 2017. Vol. 2018, Oxidative Medicine and Cellular Longevity. 2018. DOI: https://doi.org/10.1155/2022/9873652.
  27. Yildiz E, Guldas M, Ellergezen P, Acar AG, Gurbuz O. Obesity-associated Pathways of Anthocyanins. Food Sci Technol. 2020;41:1–13. DOI: https://doi.org/10.1590/fst.39119.
  28. Miguel MG. Anthocyanins: Antioxidant and/or anti-inflammatory activities.
  29. Lila MA, Burton-Freeman B, Grace M, Kalt W. Unraveling Anthocyanin Bioavailability for Human Health. Vol. 7, Annual Review of Food Science and Technology. Annu Rev Food Sci Technol; 2016. p. 375–93. DOI: https://doi.org/10.1146/annurev-food-041715-033346.
  30. McGhie TK, Walton MC. The bioavailability and absorption of anthocyanins: Towards a better understanding. Mol Nutr Food Res. 2007;51(6):702–13. DOI: https://doi.org/10.1002/mnfr.200700092.
  31. Pojer E, Mattivi F, Johnson D, Stockley CS. The Case for Anthocyanin Consumption to Promote Human Health: A Review. Compr Rev food Sci food Saf. 2013;12(5):483–508. DOI: https://doi.org/10.1111/1541-4337.12024.
  32. Lee YM, Yoon Y, Yoon H, Park HM, Song S, Yeum KJ. Dietary anthocyanins against obesity and inflammation. Nutrients. 2017;9(10):1–15. DOI: https://doi.org/10.3390/nu9101089.
  33. Ngamsamer C, Sirivarasai J, Sutjarit N. The Benefits of Anthocyanins against Obesity-Induced Inflammation. Biomolecules. 2022;12(6). DOI: https://doi.org/10.3390/biom12060852.
  34. Birari. NPC Natural Product Communications. 2010;1(4):9–12.
  35. Samuel Wu YH, Chiu CH, Yang DJ, Lin YL, Tseng JK, Chen YC. Inhibitory effects of litchi (Litchi chinensis Sonn.) flower-water extracts on lipase activity and diet-induced obesity. J Funct Foods. 2013;5(2):923–9. DOI: https://doi.org/10.1016/j.jff.2013.02.002.
  36. Fabroni S, Ballistreri G, Amenta M, Romeo F V., Rapisarda P. Screening of the anthocyanin profile and in vitro pancreatic lipase inhibition by anthocyanin-containing extracts of fruits, vegetables, legumes and cereals. J Sci Food Agric. 2016;96(14):4713–23. DOI: https://doi.org/10.1002/jsfa.7708.
  37. Rajan L, Palaniswamy D, Mohankumar SK. Targeting obesity with plant-derived pancreatic lipase inhibitors: A comprehensive review. Vol. 155, Pharmacological Research. Elsevier Ltd; 2020. 104681 p. DOI: https://doi.org/10.1016/j.phrs.2020.104681.
  38. Desjardins EM, Steinberg GR. Emerging Role of AMPK in Brown and Beige Adipose Tissue (BAT): Implications for Obesity, Insulin Resistance, and Type 2 Diabetes. Curr Diab Rep. 2018;18(10):1–9. DOI: https://doi.org/10.1007/s11892-018-1049-6.
  39. Luo Z, Saha AK, Xiang X, Ruderman NB. AMPK, the metabolic syndrome and cancer. Trends Pharmacol Sci. 2005;26(2):69–76. DOI: https://doi.org/10.1016/j.tips.2004.12.011.
  40. Cannon B, Nedergaard J. Brown Adipose Tissue: Function and Physiological Significance. Physiol Rev. 2004;84(1):277–359. DOI: https://doi.org/10.1152/physrev.00015.2003.
  41. Qin B, Anderson RA. An extract of chokeberry attenuates weight gain and modulates insulin, adipogenic and inflammatory signalling pathways in epididymal adipose tissue of rats fed a fructose-rich diet. Br J Nutr. 2012;108(4):581–7. DOI: https://doi.org/10.1017/s000711451100599x.
  42. Park S, Kang S, Jeong DY, Jeong SY, Park JJ, Yun HS. Cyanidin and malvidin in aqueous extracts of black carrots fermented with Aspergillus oryzae prevent the impairment of energy, lipid and glucose metabolism in estrogen-deficient rats by AMPK activation. Genes Nutr. 2015;10(2). DOI: https://doi.org/10.1007/s12263-015-0455-5.
  43. Kanamoto Y, Yamashita Y, Nanba F, Yoshida T, Tsuda T, Fukuda I, et al. A black soybean seed coat extract prevents obesity and glucose intolerance by up-regulating uncoupling proteins and down-regulating inflammatory cytokines in high-fat diet-fed mice. J Agric Food Chem. 2011;59(16):8985–93. DOI: https://doi.org/10.1021/jf201471p.
  44. Hwang YP, Choi JH, Han EH, Kim HG, Wee JH, Jung KO, et al. Purple sweet potato anthocyanins attenuate hepatic lipid accumulation through activating adenosine monophosphate-activated protein kinase in human HepG2 cells and obese mice. Nutr Res. 2011;31(12):896–906. DOI: https://doi.org/10.1016/j.nutres.2011.09.026.
  45. Saltiel AR. New therapeutic approaches for the treatment of obesity. Sci Transl Med. 2016;8(323). DOI: https://doi.org/10.1126/scitranslmed.aad1811.
  46. Badshah H, Ullah I, Kim SE, Kim T hyun, Lee HY, Kim MO. Anthocyanins attenuate body weight gain via modulating neuropeptide Y and GABAB1 receptor in rats hypothalamus. Neuropeptides. 2013;47(5). DOI: https://doi.org/10.1016/j.npep.2013.06.001.
  47. Wu T, Yin J, Zhang G, Long H, Zheng X. Mulberry and cherry anthocyanin consumption prevents oxidative stress and inflammation in diet-induced obese mice. Mol Nutr Food Res. 2016;60(3):687–94. DOI: https://doi.org/10.1002/mnfr.201500734.
  48. Schwerk A, Altschüler J, Roch M, Gossen M, Winter C, Berg J, et al. Adipose-derived human mesenchymal stem cells induce long-term neurogenic and anti-inflammatory effects and improve cognitive but not motor performance in a rat model of Parkinson’s disease. Regen Med. 2015;10(4):431–46. DOI: https://doi.org/10.2217/rme.15.17.
  49. Levites Y, Weinreb O, Maor G, Youdim MB, Mandel S. Green tea polyphenol (-)-epigallocatechin-3-gallate prevents N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced dopaminergic neurodegeneration. J Neurochem. 2001;78(5):1073–82. Available from: http://europepmc.org/abstract/MED/11553681
  50. Wu T, Jiang Z, Yin J, Long H, Zheng X. Anti-obesity effects of artificial planting blueberry (Vaccinium ashei) anthocyanin in high-fat diet-treated mice. Int J Food Sci Nutr. 2016;67(3):257–64. DOI: https://doi.org/10.3109/09637486.2016.1146235.
  51. Kim JE, Kim JS, Jo MJ, Cho E, Ahn SY, Kwon YJ, et al. The Roles and Associated Mechanisms of Adipokines in Development of Metabolic Syndrome. Molecules. 2022;27(2). DOI: https://doi.org/10.3390/molecules27020334.

How to Cite

Surudarma, I. W. ., Weta, I. W. ., Wihandani, D. M. ., & Pinatih, G. N. I. . (2024). Effect of anthocyanins on obesity. Indonesia Journal of Biomedical Science, 18(1), 132–139. https://doi.org/10.15562/ijbs.v18i1.547

HTML
37

Total
19

Share

Search Panel

I Wayan Surudarma
Google Scholar
Pubmed
IJBS Journal


I Wayan Weta
Google Scholar
Pubmed
IJBS Journal


Desak Made Wihandani
Google Scholar
Pubmed
IJBS Journal


Gde Ngurah Indraguna Pinatih
Google Scholar
Pubmed
IJBS Journal