Skip to main content Skip to main navigation menu Skip to site footer

Antibacterial activity of Spondias pinnata leaf extract on the in-vitro growth of Gram-positive and Gram-negative bacteria

Abstract

Background: Infectious diseases caused by both Gram-positive and Gram-negative bacteria infection continue to be a significant cause of health problems. Over the past decades, there has been a growing interest in Spondias pinnata research. It has also been demonstrated that the essential oil and leaf extract of Spondias pinnata has strong antibacterial properties. This study aims to assess and analyze the antibacterial activity of Spondias pinnata leaf extract on the growth of Gram-positive and Gram-negative bacteria in vitro.

Methods: The design of this research is an experimental study with a post-test-only control group design at the Biomedical Laboratory, Faculty of Medicine and Health Sciences, Universitas Warmadewa, and the Clinical Microbiology Laboratory, Faculty of Medicine, Universitas Udayana. The samples in this study were Staphylococcus aureus, methicillin-resistant Staphylococcus aureus, Streptococcus mutans, Escherichia coli, Klebsiella pneumoniae, and Salmonella typhimurium bacteria in which antibacterial activity of Spondias pinnata leaf extract was tested by using the Kirby-Bauer method.

Results: The active compounds contained in the extract of Spondias pinnata leaf include saponins, phenols, terpenoids, alkaloids, flavonoids, and tannins. Antibacterial activity of 60% extract concentration on Gram-positive bacteria (Staphylococcus aureus, methicillin-resistant Staphylococcus aureus, Streptococcus mutans) had a strong inhibitory effect. Antibacterial activity of 40% and 60% extract concentrations on Gram-negative bacteria (Escherichia coli, Klebsiella pneumoniae, Salmonella typhimurium) had moderate inhibitory effects.

Conclusion: Spondias pinnata leaf extract had antibacterial activity potential on Gram-positive and Gram-negative bacteria, aligning with its increased concentration.

Section

References

  1. Catalano A, Iacopetta D, Ceramella J, et al. Multidrug Resistance (MDR): A Widespread Phenomenon in Pharmacological Therapies. Molecules. 2022;27(3):616. doi:10.3390/molecules27030616.
  2. Fodor A, Abate BA, Deák P, et al. Multidrug Resistance (MDR) and Collateral Sensitivity in Bacteria, with Special Attention to Genetic and Evolutionary Aspects and to the Perspectives of Antimicrobial Peptides-A Review. Pathogens. 2020;9(7):522. doi:10.3390/pathogens9070522.
  3. Lehtinen S, Blanquart F, Lipsitch M, Fraser C; with the Maela Pneumococcal Collaboration. On the evolutionary ecology of multidrug resistance in bacteria. PLoS Pathog. 2019;15(5):e1007763. doi:10.1371/journal.ppat.1007763.
  4. Breijyeh Z, Jubeh B, Karaman R. Resistance of Gram-Negative Bacteria to Current Antibacterial Agents and Approaches to Resolve It. Molecules. 2020;25(6):1340. doi:10.3390/molecules25061340.
  5. Karaman R, Jubeh B, Breijyeh Z. Resistance of Gram-Positive Bacteria to Current Antibacterial Agents and Overcoming Approaches. Molecules. 2020;25(12):2888. doi:10.3390/molecules25122888.
  6. Sionov RV, Steinberg D. Targeting the Holy Triangle of Quorum Sensing, Biofilm Formation, and Antibiotic Resistance in Pathogenic Bacteria. Microorganisms. 2022;10(6):1239. doi:10.3390/microorganisms10061239.
  7. Li R, Yang JJ, Song XZ, et al. Chemical Composition and the Cytotoxic, Antimicrobial, and Anti-Inflammatory Activities of the Fruit Peel Essential Oil from Spondias pinnata (Anacardiaceae) in Xishuangbanna, Southwest China. Molecules. 2020;25(2):343. doi:10.3390/molecules25020343.
  8. Sameh S, Al-Sayed E, Labib RM, Singab AN. Genus Spondias: A Phytochemical and Pharmacological Review. Evid Based Complement Alternat Med. 2018;2018:5382904. doi:10.1155/2018/5382904.
  9. Iqbal SS, Mujahid M, Kashif SM, et al. Protection of hepatotoxicity using Spondias pinnata by prevention of ethanol-induced oxidative stress, DNA-damage and altered biochemical markers in Wistar rats. Integr Med Res. 2016;5(4):267-275. doi:10.1016/j.imr.2016.05.002.
  10. Santos ÉMD, Ataide JA, Coco JC, et al. Spondias sp: Shedding Light on Its Vast Pharmaceutical Potential. Molecules. 2023;28(4):1862. doi:10.3390/molecules28041862
  11. Ouchari L, Boukeskasse A, Bouizgarne B, Ouhdouch Y. Antimicrobial potential of actinomycetes isolated from the unexplored hot Merzouga desert and their taxonomic diversity. Biol Open. 2019;8(2):bio035410. doi:10.1242/bio.035410.
  12. Hawken SE, Snitkin ES. Genomic epidemiology of multidrug-resistant Gram-negative organisms. Ann N Y Acad Sci. 2019;1435(1):39-56. doi:10.1111/nyas.13672.
  13. Chen Y, Chen X, Liang Z, et al. Epidemiology and prediction of multidrug-resistant bacteria based on hospital level. J Glob Antimicrob Resist. 2022;29:155-162. doi:10.1016/j.jgar.2022.03.003.
  14. Zawack K, Love WJ, Lanzas C, Booth JG, Gröhn YT. Estimation of multidrug resistance variability in the National Antimicrobial Monitoring System. Prev Vet Med. 2019;167:137-145. doi:10.1016/j.prevetmed.2019.03.006.
  15. Endale H, Mathewos M, Abdeta D. Potential Causes of Spread of Antimicrobial Resistance and Preventive Measures in One Health Perspective-A Review. Infect Drug Resist. 2023;16:7515-7545. doi:10.2147/IDR.S428837.

How to Cite

Suryanditha, P. A., Widhidewi, N. W. ., Paramasatiari, A. A. A. L. ., & Wedari, N. L. P. H. . (2024). Antibacterial activity of Spondias pinnata leaf extract on the in-vitro growth of Gram-positive and Gram-negative bacteria. Indonesia Journal of Biomedical Science, 18(1), 90–94. https://doi.org/10.15562/ijbs.v18i1.550

HTML
74

Total
68

Share

Search Panel

Putu Arya Suryanditha
Google Scholar
Pubmed
IJBS Journal


Ni Wayan Widhidewi
Google Scholar
Pubmed
IJBS Journal


Anak Agung Ayu Lila Paramasatiari
Google Scholar
Pubmed
IJBS Journal


Ni Luh Putu Harta Wedari
Google Scholar
Pubmed
IJBS Journal